A Semiparametric Model for Binary Response and Continuous Outcomes Under Index Heteroscedasticity
نویسندگان
چکیده
A Semiparametric Model for Binary Response and Continuous Outcomes Under Index Heteroscedasticity This paper formulates a likelihood-based estimator for a double index, semiparametric binary response equation. A novel feature of this estimator is that it is based on density estimation under local smoothing. While the proofs differ from those based on alternative density estimators, the finite sample performance of the estimator is significantly improved. As binary responses often appear as endogenous regressors in continuous outcome equations, we also develop an optimal instrumental variables estimator in this context. For this purpose, we specialize the double index model for binary response to one with heteroscedasticity that depends on an index different from that underlying the “mean-response”. We show that such (multiplicative) heteroscedasticity, whose form is not parametrically specified, effectively induces exclusion restrictions on the outcomes equation. The estimator developed below exploits such identifying information. We provide simulation evidence on the favorable performance of the estimators and illustrate their use through an empirical application on the determinants, and affect, of attendance at a government financed school. JEL Classification: C35, C14
منابع مشابه
A MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES
A model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. In this model response indicator for the binary response can be dependent on the continuous response. A closed form for the likelihood is found. For data with a complicated pattern of missing responses some new residuals are also proposed. The model of multiplicative heter...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملDEPARTMENT OF ECONOMICS WORKING PAPER SERIES Kernel Weighted Smoothed Maximum Score Estimation for Applied Work
The endogenous binary response model frequently arises in economic applications when a covariate is correlated with the error term in the latent equation due to data limitations. Applied workers generally address endogeneity using the principle of Maximum Likelihood (ML) which imposes stringent parametric assumptions. These ML estimators are inconsistent if the posited parametrization is incorr...
متن کاملSemiparametric Estimation of Heteroscedastic Binary Choice Sample Selection Models under Symmetry
Binary choice sample selection models are widely used in applied economics with large crosssectional data where heteroscedaticity is typically a serious concern. Existing parametric and semiparametric estimators for the binary selection equation and the outcome equation in such models su®er from serious drawbacks in the presence of heteroscedasticity of unknown form in the latent errors. In thi...
متن کاملطراحی شبکه عصبی مصنوعی برای مدلبندی پاسخهای دو متغیره آمیخته و کاربرد آن در دادههای پزشکی
Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. Artificial neural networks (ANN) can be used for modeling in situations where classic models have restricted application when some of their assumptions are not met. In this paper, we propose a method based on ANNs for modeling mixed binary a...
متن کامل